RESEARCH HIGHLIGHTSFor NanoCentury

Research highlight

KAIST Institute For NANOCENTURY

  • >
  • RESEARCH HIGHLIGHTS
  • >
  • Research highlight
등록일 2015-12-31 
제목 없음111.png


Groundbreaking Polymer Insulating Layers Bring the Era of IoT Closer 

“Thus far, thin insulating layers for electronic devices have used inorganic materials such as oxides. However, these substances have limited flexibility and, therefore, were difficult to apply to flexible electronic devices. In order to bring the Internet of Things (IoT) technologies closer to people’s everyday lives, it is foremost necessary to use wearable and flexible electronic devices. Considering the low capacity of batteries used for wearable devices, it is also essential to develop low-power electronic devices. The ultrathin polymer insulating layers developed in the recent research concurrently provide the mechanical flexibility and outstanding insulation that wearable electronic devices are looking for. Once this material is used for producing low-power flexible electronic devices and for a wider range of futuristic electronic appliances, the era of the IoT will be brought forward at a faster pace.”

Application for Futuristic Wearable and Flexible Electronic Devices Accelerates the Arrival of Dream Devices 

As a substitute for solid, heavy material based on inorganic materials, low-power polymer insulating layers were developed for the use for futuristic wearable and flexible electronic devices, signaling the arrival of the era of the Internet of Things (IoT). 

In collaboration with Profs. Im, Sung Gap and Cho, Byung Jin, Prof. Yoo, Seunghyup’s group at KINC successfully developed polymer insulating layers that can be down-scaled below 10nm, equivalent to 1/10,000 of a human hair. Published in Nature Materials, a sister journal of the world-famous scientific journal Nature, the developed polymer insulating layers exhibit insulating properties ideal for low-power soft electronic devices. This ultrathin layer prevents electric currents from flowing even when a strong electric field exists. Having participated in the joint research, Prof. Im, Sung Gap compares the developed polymer withstanding such a high field with a very thin plastic vinyl layer holding a huge amount of water without any leakage. The polymer layer can actually resist an extremely strong electric field, equivalent to millions of volts for one-centimeter thickness. 

Ultrathin insulating layers are critical elements that enable the operation of transistors, a core unit device constituting most functional integrated circuits today. In general, transistors are comprised of three electrodes, a semiconductor, and an insulator. Among the three electrodes, one called a “gate electrode” plays the role of a knob in a faucet, switching on or off the electric current flowing through the semiconductor. The gate electrode works in such a way because the insulating layer existing between the gate electrode and semiconductor can change the latter’s conductivity. In particular, when the insulating layers become thinner, the semiconductor has stronger conductivity at the same gate voltage, ultimately making it possible to develop low-power devices. 

For existing transistor devices, ceramic substances such as oxides have been used to produce high-quality ultrathin insulators. However, ceramic materials are highly susceptible to bending-induced cracks, which makes them inadequate for flexible devices. Against this backdrop, the joint research team turned to the initiated chemical vapor deposition (iCVD) and developed high-quality 10-nm-level polymer insulating layers that can operate transistors at a low voltage. Although the wearable devices available today mostly take the form of smart watches, the ultrathin layers are expected to help develop easily expandable or bendable futuristic electronic devices in the form of patches that attach to human skin, for example. Such devices will enable comprehensive, ongoing monitoring in the medical and healthcare sectors without resorting to heavy or bulky equipment. In addition, displays that can be bent or folded without compromising their outstanding performance are expected to bring a revolutionary transformation to the future display market. 

Once technologies are further developed for the customized design of insulating layers for different uses, coupled with realization of creative devices to take advantage of the unique properties of those layers, the ultrathin insulating layers are expected to significantly contribute to the development of low-power flexible electronic devices.

Prof. Yoo, Seunghyup                                                                              2015 Annual Report


Making Graphene Using Laser-induced Phase Separation
- KAIST researchers reveal how laser annealing technology leads to the synthesis of graphene from silicon carbide (SiC). The laser annealing technology has been adopted in mass-manufactured displays, like s...
2016-12-21
Computer Simulations Reveal Why Graphene Nanoplatelets Are Go...
Professor Yong-Hoon Kim’s laboratory at the Graduate school of Energy, Environment, Water and Sustainability (EEWS) has revealed the electrochemical reaction mechanism of edge-selenated graphene nanoplatelets fo...
2016-10-12
Origami of Hydrogel-laden Paper Scaffolds
A new method to bind hydrogel on paper produces implantable paper origami for tissue regeneration. The formation of organs in a living organism is triggered by an agglomeration of primitive cells that mature int...
2016-05-02
Liquid Crystal Molecules Produce Complex Udumbara Flower Like...
"Sublimation and recondensation of liquid crystal molecules can produce complex curvatures at the nanometer scale such as an Udumbara flower-like structure." Curvatures of soft matters Curved surfaces ...
2016-05-02
Development of 10nm-level Polymer Insulating Layers for Low-P...
Groundbreaking Polymer Insulating Layers Bring the Era of IoT Closer “Thus far, thin insulating layers for electronic devices have used inorganic materials such as oxides. However, these substances have limited ...
2015-12-31
Ultrathin Polymer Insulator Films for Low-power Soft Electronics
Organic insulator: a key material for future soft electronics A field-effect transistor (FET) is an essential component of modern electronic devices from cell phones and computers to flat-panel displays. A FET c...
2015-11-30
The Mystery of Luminescent Graphene Quantum Dots
Luminescence from graphene-based quantum dots Graphene is now a well-known two-dimensional material composed of a single atomic layer of carbon atoms. However many people do not know that graphene shines when th...
2015-11-30
Stamping with Graphene
A way to transfer graphene Since Andre Geim and Konstantin Novoselov at the University of Manchester discovered how to isolate a single atomic layer of carbon atoms from graphite by using Scotch tape in 2004, th...
2015-05-15
Sniffing VOCs with Nanomaterials
Lung cancer diagnosis in the future: sniffing one’s breath Early diagnosis is very important for the effective treatment and improvement of the survival rates of patients, which is considered especially critical...
2015-05-15
Development of Core Technology for Graphene Quantum-dot Displays
Opening the era of paper-thin displays “Graphene quantum dots made using the graphite intercalation compound method produce high efficiency light-emitting diodes with over 1,000 cd/m2 of luminance. While the max...
2014-12-31
Bio-Inspired Approach
Organisms: The Beginning of Future Battery Technology “The secondary-battery market is growing fast in the fields of small electronic devices, electric automobiles, and power storage. The “bio-inspired approach”...
2014-12-31
Conformal Graphene Coating Keeps Hydrophobicity
The dilemma of graphene coating: To be or not to be hydrophobic The hydrophobicity (or philicity) of a surface tells us how the surface interacts with water. When the surface of an object is composed of hydrophi...
2014-10-17
The Development of Graphene (a Dream Material) Transfer Techn...
Dry transfer technology for two-dimensional materials applied to various platforms "In the short term, graphene can be applied to existing devices to dramatically improve their performances. Such devices in...
2013-12-31
Manufacturing Technology for Ultra-stretchable Materials by U...
Development of world-leading stretchable electronic materials "As the wearable computer market has become more active, it is expected that alternative technologies that increase stretchability while maintai...
2013-12-31